
1/7

www.coursera.org
/learn/ibm-containers-docker-kubernetes-openshift/supplement/hRiEX/deployment-strategies

Deployment Strategies

Overview
A Kubernetes deployment strategy defines an application’s lifecycle that achieves and maintains the
configured state for objects and applications in an automated manner. Effective deployment strategies
minimize risk.

Kubernetes deployment strategies are used to: 

Deploy, update, or rollback ReplicaSets, Pods, Services, and Applications 

Pause/Resume Deployments 

Scale Deployments manually or automatically 

Types of deployment strategies

The following are six types of deployment strategies:

1. Recreate 

2. Rolling 

3. Blue/green 

https://www.coursera.org/learn/ibm-containers-docker-kubernetes-openshift/supplement/hRiEX/deployment-strategies


2/7

4. Canary 

5. A/B testing 

6. Shadow 

You can use either a single deployment strategy or a combination of multiple deployment strategies.

Recreate strategy 

In the recreate strategy, Pods running the live version of the application are all shut down simultaneously,
and a new version of the application is deployed on newly created Pods. 

Recreate is the simplest deployment strategy. There is a short downtime between the shutdown of the
existing deployment and the new deployment. 

Recreate strategy steps include:

1. A new version of the application (v2) is ready for deployment. 

2. All Pods running the current version (v1) are shut down or deleted. 

3. New (v2) Pods are created. 

The rollback process is completed in the reverse order, replacing version 2 (v2) with version 1 (v1).

Pros Cons

Simple setup Short downtime occurs between shutdown and new
deployment

Application version completely
replaced

Rolling (ramped) strategy 



3/7

In a rolling strategy, each Pod is updated one at a time. A single v1 Pod is replaced with a new v2 Pod.
Each v1 Pod is updated in this way until all Pods are v2. During a rolling strategy update, there is hardly
any downtime since users are directed to either version.

Rolling strategy steps include:

1. A new version of the application (v2) is ready for deployment. 

2. One of the Pods running the current version (v1) is shut down or deleted. 

3. A new (v2) Pod is created to replace the (v1) Pod that was removed. 

4. Steps 2 and 3 are repeated until all (v1) Pods are removed and replaced with (v2) Pods. 

The rollback process is reversed, where v2 Pods are replaced by v1 Pods. 

Pros Cons
Simple setup Rollout/rollback takes time 
Suitable for stateful applications that need to handle rebalancing
of the data

You cannot control traffic
distribution

Blue/green strategy



4/7

In a blue/green strategy, the blue environment is the live version of the application. The green
environment is an exact copy that contains the deployment of the new version of the application. The
green environment is thoroughly tested. Once all changes, bugs, and issues are addressed, user traffic is
switched from the blue environment to the green environment.

Blue/green strategy steps include:

1. Create a new environment identical to the current production environment. 

2. Design the new version and test it thoroughly until it is ready for production. 

3. Route all user traffic to the new version. 

To perform a rollback, switch the environments back.

Pros Cons
Instant rollout/rollback (no downtime) Expensive (requires double resources)
New version is available immediately to all
users

Rigorous testing required before releasing to
production
Handling stateful applications is difficult

Canary strategy

In a canary strategy, the new version of the application is tested using a small set of random users
alongside the current live version of the application. Once the new version of the application is
successfully tested, it is then rolled out to all users. 

Canary strategy steps include:

1. Design a new version of the application. 

2. Route a small sample of user requests to the new version. 

3. Test for efficiency, performance, bugs, and issues, and rollback as needed. 

4. Repeat steps 1 to 3. Once all issues are resolved, route all traffic to the new version.  



5/7

Rollback has no downtime since few users are exposed to the new version.

Pros Cons
Convenient for reliability, error, and performance monitoring Slow rollout, gradual user access
Fast rollback

A/B testing strategy

The A/B testing strategy, also known as split testing, evaluates two versions of an application (version A
and version B). With A/B testing, each version has features that cater to different sets of users. You can
select which version is best for global deployment based on user interaction and feedback. 

A/B testing strategy steps include:

1. Design a new version of the application by adding mostly UI features. 

2. Identify a small set of users based on conditions like weight, cookie value, query parameters,
geolocalization, browser version, screen size, operating system, and language. 

3. Route requests from the user set to the new version. 

4. Check for bugs, efficiency, performance, and issues. 

5. Once all issues are resolved, route all traffic to the new version. 

Rollbacks can be implemented, but downtime can impact the user.

Pros Cons
Multiple versions can run in
parallel Requires intelligent load balancer

Full control over traffic
distribution 

Difficult to troubleshoot errors for a given session, distributed tracing
becomes mandatory

Shadow strategy



6/7

In a shadow strategy, a “shadow version” of the application is deployed alongside the live version. User
requests are sent to both versions, and both handle all requests, but the shadow version does not
forward responses back to the users. This lets developers see how the shadow version performs using
real-world data without interrupting user experience.

To perform a rollback, switch the environments back.

Pros Cons
Performance testing with production traffic Expensive (double resources) 
No user impact Not a true user test, can lead to misinterpreted results
No downtime Complex setup

Requires monitoring for two environments

Deployment strategies summary

Strategy Zero
Downtime

Real
Traffic
Testing

Targeted
Users

Cloud
Cost

Rollback
Duration

NegativeUser
Impact 

Complexity
of Setup

Recreate

Version 1 is removed
then version 2 is rolled
out

X X X •-- ••• ••• - - -

Ramped

Version 1 is replaced
by a slow rollout of
version 2

✓ X X •-- ••• •-- •--

Blue/Green

Version 2 is released
together with version
1, then the traffic is
switched to version 2

✓ X X ••• - - - ••- ••-

Canary

Version 2 is first
released to a subset of
users, then fully rolled
out when production
ready

✓ ✓ X •-- •-- •-- ••-



7/7

Strategy Zero
Downtime

Real
Traffic
Testing

Targeted
Users

Cloud
Cost

Rollback
Duration

NegativeUser
Impact 

Complexity
of Setup

A/B Testing

Version 2 is only
released to a subset of
users with specific
traits

✓ ✓ ✓ •-- •-- •-- •••

Shadow

Version 2 receives
real-world traffic
together with version
A but doesn’t respond
to users

✓ ✓ X ••• - - - - - - •••

To create a good strategy:

Consider the product type and the target audience 

Shadow and canary strategies use live user requests, as opposed to using a sample of users.  

The A/B testing strategy is useful if the version of the application requires minor tweaks or UI
feature changes. 

The blue/green strategy is useful if your version of the application is complex or critical and needs
proper monitoring with no downtime during deployment. 

The canary strategy is a good choice if you want zero downtime and are comfortable exposing your
version of the application to the public.  

A rolling strategy gradually deploys the new version of the application. There is no downtime, and it
is easy to roll back. 

The recreate strategy is a good choice if the application is not critical and users aren’t impacted by
a short downtime. 


