Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

Practice Lab: Autoscaling and Secrets Management

Skills
Network

This practice lab is designed to provide hands-on experience with Kubernetes, focusing on vertical and horizontal pod autoscaling and secrets management.

Objectives

In this practice lab, you will:

¢ Build and deploy an application to Kubernetes

¢ Implement Vertical Pod Autoscaler (VPA) to adjust pod resource requests/limits

¢ Implement Horizontal Pod Autoscaler (HPA) to scale the number of pod replicas based on resource utilization
o Create a Secret and update the deployment for using it

Note: Kindly complete the lab in a single session without any break because the lab may go in offline mode and cause errors. If you face any issues/errors during the lab process, please
logout from the lab environment. Then, clear your system cache and cookies and try to complete the lab.

Setup the environment

On the menu bar, click Terminal and select the New Terminal option from the drop-down menu.

IBMCloud Launch Application
File Edit Selection View Go Run Terminal Help

New Terminal Ctri+Shift+

Run Task...

Run Build Task

Run Test Task

Rerun Last Task Ctri+Shift+K

Show Running Tasks
Restart Running Task
Terminate Task...
Attach Task...

Configure Tasks...

Note: If the terminal is already open, please skip this step.

Step 1: Verify kubectl version

Before proceeding, ensure that you have kubectl installed and properly configured. To check the version of kubectl, run the following command:
kubectl version

You should see the following output, although the versions may be different:

theia@theiad sundararaja: $ kubectl version

WARNING: This version information is deprecated and will be replaced with the output from kubectl version --short. Use --output=yaml|json to get

the full version.

Client Version: version.Info{Major , Mino 27", GitVersion:"v1.27 , GitCommit:"741c8db18a52787d734cbe4795f0b4ad8606906d6 GitTreeState:"cle
BuildDate:"2023-09-13T709:21:34Z", GoVersio go1.20.8", Compiler:“"gc”, Platform inux/amd64"}

Kustomi Version: v5.0.1
Server Version: version.Info{Major , Mino 27", GitVersion:"v1.27.14+IKS", GitCommit:"8db9c4804f1f37994e83aa532670006369716b8d", GitTreeState
i "2024-05-15T17:52:82Z", GoVersion:"gol.21.9 Compiler:“gc”, Platform:"linux/amd64"}

Step 2: Clone the project repository

Clone the repository with the starter code to commence the project.

git clone https://github.com/ibm-developer-skills-network/k8-scaling-and-secrets-mgmt.git

Exercise 1: Build and deploy an application to Kubernetes

The Dockerfile in this repository already has the code for the application. You are just going to build the docker image and push it to the registry.
You will be giving the name myapp to your Kubernetes deployed application.
Step 1: Build the Docker image
1. Navigate to the project directory.
cd k8-scaling-and-secrets-mgmt
2. Export your namespace.
export MY_NAMESPACE=sn-labs-$USERNAME
3. Build the Docker image.

docker build . -t us.icr.io/$MY_NAMESPACE/myapp:v1l

1sur?7 3/13/2025, 2:59 PM

Firefox

2 sur7

https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

theia@theiadoc ksundararaja: $ docker build . -t us.icr.io/$MY_NAMESPACE/myapp:vl

[+] Building 21.9s (5/10)

=> [1/5] FROM docker.io/library/node:14@sha256:a158d3b9b4e3fa813fa6c8c590b8f0a860e@15ad4e59bbce5744d2f6fd8461aa

docker:default

894511ce28a@5e2925a75e8a4acbd0634c39ad734fdfba8e23d1b1569 191.85MB / 191.85MB

Step 2: Push and list the image

1. Push the tagged image to the IBM Cloud Container Registry.
docker push us.icr.io/$MY_NAMESPACE/myapp:v1l

theia@theiadocker-ksundararaja: $ docker push us.icr.io/$MY_NAMESPACE/myapp:vl
The push refers to repository [us.icr.io/sn-labs-ksundararaja/myapp]

d60490235730: Pushed

003de62710da: Pushed

306c0@ccb34b4: Pushed

769169bec673: Pushed

0d5f5a015e5d: Pushed

3c777d951de2: Pushed

f8a91dd5fc84: Pushed

cb81227abde5: Pushed

e01a454893a9: Pushed

c45660adde37: Pushed

fed@fb3ab4a0df: Pushed

f1186e5061f2: Pushed

b2dba7477754: Pushed

vl: digest: sha256:28d591aa82841c98bel17f9d0f04bc9d56df6e3cce36b43320b64e5747cee2078 size: 3042
thei heiadock undararaja:

2. List all the images available. You will see the newly created myapp image.
ibmcloud cr images

theia@theiadocker-ksundararaja: $ ibmcloud cr images
Listing images...

Repository Tag
Digest Namespace Created Security status
-1la 3 p vl
28d591aa8284 2 minutes ago -
n-la c ne latest
6b01b1e5527b sn-labsassets 2 years ago s -
-1la cl ficat e
dbd407898549 sn-labsassets 5 =
-1a c -wa time latest
1e4741f10569 sn-labsassets 5 =
-1la nl ime test
f6513e19a33d sn-labsassets . -
-1a ia n-n latest
38916c2119fc sn-labsassets - =
-1a at nlp-run latest
1c9de1d27318 sn-labsassets 5 =
sn-1la € -mentic 1 latest
57d92957214f sn-labsassets =

latest

Step 3: Deploy your application

1. Open the deployment.yaml file located in the main project directory. It's content will be as follows:

apiVersion: apps/vl
kind: Deployment
metadata:
name: myapp
labels:
app: myapp
spec:
replicas: 1
selector:
matchLabels:
app: myapp
strategy:
rollingUpdate:
maxsurge: 25%
maxUnavailable: 25%
type: RollingUpdate
template:
metadata:

labels:
app: myapp

spec:

containers:

- image: us.icr.io/<your SN labs namespace>/myapp:vl
imagePullPolicy: Always
name: myapp
ports:

- containerPort: 3000
name: http
resources:

docker:default

[+] Building 22.0s

3/13/2025, 2:59 PM

Firefox

3sur?7

limits:
cpu: 5em

requests:
cpu: 20m

2. Replace <your SN labs namespace> with your actual SN lab's namespace.

» Click here for the ways to get your namespace
3. Apply the deployment.
kubectl apply -f deployment.yaml
theia@theiadocker-ksundar
deployment.apps/myapp created
theia@theiadocker-ksundararaja:
4. Verify that the application pods are running and accessible.
kubectl get pods

theia@theiadock

NAME READY STATUS RESTARTS

myapp-6cc7f9ffcf-2xnm6 1/1 Runni 2]
t

eia@the -ksundararaja:

Step 4: View the application output

1. Start the application on port-forward:
kubectl port-forward deployment.apps/myapp 3000:3000

t iadocker-ksundararaj

IT; :
Forwarding from 127.0.0.1:3000 -> 3000

Forwarding from [::1]:3000 -> 3000

2. Launch the app on Port 3eee to view the application output.

3. You should see the message Hello from MyApp. Your app is up!.

https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

$ kubectl apply -f deployment.yaml

$ kubectl get pods

3 |

$ kubectl port-forward deployment.apps/myapp 3000:3000

C 25 ksundararaja-3000.theiadockernext-0-labs-prod-theiak8s-4-tor01.proxy.cognitiveclass.ai

MyApp

Hello from MyApp. Your app is up!

4. Stop the server before proceeding further by pressing CTRL + C.

5. Create a ClusterIP service for exposing the application to the internet:

kubectl expose deployment/myapp

SCE a@ e] 2r -k ndara
service/myapp exposed
theia@theiadc ksundararaj

$ kubectl expose deployment/myapp

s

Exercise 2: Implement Vertical Pod Autoscaler (VPA)

Vertical Pod Autoscaler (VPA) helps you manage resource requests and limits for containers running in a pod. It ensures pods have the appropriate resources to operate efficiently by automatically adjusting the CPU and

memory requests and limits based on the observed resource usage.

Step 1: Create a VPA configuration

You will create a Vertical Pod Autoscaler (VPA) configuration to automatically adjust the resource requests and limits for the myapp deployment.

Explore the vpa.yaml file, which has the following content:

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
name: myvpa
spec:
targetRef:
apiVersion: "apps/v1l"
kind: Deployment
name: myapp
updatePolicy:

updateMode: "Auto" # VPA will automatically update the resource requests and limits

Explanation

This YAML file defines a VPA configuration for the myapp deployment. The updateMode: "Auto" setting means that VPA will automatically update the resource requests and limits for the pods in this deployment based on

the observed usage.
Step 2: Apply the VPA

Apply the VPA configuration using the following command:

kubectl apply -f vpa.yaml

verticalpodautoscaler.autoscaling.k8s.io/myvpa created

$ kubectl apply -f vpa.yam

3/13/2025, 2:59 PM

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

Step 3: Retrieve the details of the VPA

1. Retrieve the created VPA:

kubectl get vpa

theia@theia 3 <sundararaja: $ kubectl get vpa

NAME MODE CPU MEM PROVIDED AGE
myvpa Auto 25m 262144k True 29s

This output shows that:

e The VPA named myvpa is in Auto mode, recommending 25 milli-cores of CPU and 256 MB of memory for the pods it manages.
It has been created 29 seconds ago and has been providing these recommendations since then.

2. Retrieve the details and current running status of the VPA.
kubectl describe vpa myvpa

th er-ksundararaja: $ kubectl describe vpa myvpa
Name:
Namespace: undararaja
Labels
Annotations:
API Version: autoscaling.k8s.io/v1
Kind: VerticalPodAutoscaler
Metadata:
Creation Timestamp: 2024-06-25T15:17:04Z
Generation: 1
Resource Version: 287538855
UID: 57f5fac3-8720-4340-b877-38314901b03f
Spec:
Target Ref:
API Version: apps/vl
Kind: Deployment
Name: myapp
Update Policy:
Update Mode: Auto
Status

Conditions:
Last Transition Time: 2024-06-25T15:

Status: True
Type: RecommendationProvided
Recommendation:

Container Recommendations:
Container Name: myapp
Lower Bound:

Cpu: 25m

Memory: 262144k
Target:

Cpu: 25m

Memory: 262144k
Uncapped Target:

Cpu: 25m

Memory: 262144k
Upper Bound:

Cpu: 60m

Memory: 262144k

Explanation

The output of kubectl describe vpa myvpa is providing recommendations for CPU and memory:

Resource Definition

Lower Bound Minimum resources the VPA recommends.

Target Optimal resources the VPA recommends.

Uncapped Target Target without any predefined limits.

Upper Bound Maximum resources the VPA recommends.

Resource CPU Memory

Lower Bound 25m 256MiB (262144KiB)
Target 25m 256MiB

Uncapped Target 25m 256MiB

Upper Bound 671m 1.34GiB (1438074878KiB)

‘These recommendations indicate that the VPA is functioning correetly and is providing target values based on observed usage.

Exercise 3: Implement Horizontal Pod Autoscaler (HPA)

Horizontal Pod Autoscaler (HPA) automatically scales the number of pod replicas based on observed CPU/memory utilization or other custom metrics. VPA adjusts the resource requests and limits for individual pods.
However, HPA changes the number of pod replicas to handle the load.

Step 1: Create an HPA configuration
You will configure a Horizontal Pod Autoscaler (HPA) to scale the number of replicas of the myapp deployment based on CPU utilization.

Explore the hpa.yaml file, which has the following content:

apiVersion: autoscaling/vil
kind: HorizontalPodAutoscaler
metadata:

name: myhpa
spec:
scaleTargetRef:

apiVersion: apps/vl

kind: Deployment

name: myapp
minReplicas: 1 # Minimum number of replicas
maxReplicas: 10 # Maximum number of replicas
targetCPUUtilizationPercentage: 5 # Target CPU utilization for scaling

Explanation

4 sur 7 3/13/2025, 2:59 PM

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

This YAML file defines a Horizontal Pod Autoscaler configuration for the myapp deployment. The HPA will ensure that the average CPU utilization across all pods remains close to 5%. If the utilization is higher, HPA will
increase the number of replicas, and if it's lower, it will decrease the number of replicas within the specified range of 1 to 10 replicas.

Step 2: Configure the HPA

Apply the HPA configuration:

kubectl apply -f hpa.yaml

theia@theiadocker-ksundararaja: $ kubectl apply -f hpa.yaml
horizontalpodautoscaler.autoscaling/myhpa created

theia@theiadocker-ksundararaja: $ l

Step 3: Verify the HPA

Obtain the status of the created HPA resource by executing the following command:
kubectl get hpa myhpa

theia@theiadocker-ksundararaja: $ kubectl get hpa myhpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
myhpa Deployment/myapp 0%/5% 1 10 1

theia@theiadocker-ksundararaja: (3 |

This command provides details about the current and target CPU utilization and the number of replicas.
Step 4: Start the Kubernetes proxy

Open another terminal and start the Kubernetes proxy:

kubectl proxy

thei heiadocker-ksundararaja: $ kubectl proxy
Starting to serve on 127.0.0.1:8001

Step 5: Spam and increase the load on the app

Open another new terminal and enter the below command to spam the app with multiple requests for increasing the load:

for i in “seq 100000° ; do curl -L localhost:80@1/api/vl/namespaces/sn-labs-$USERNAME/services/myapp/proxy; done

<!DOCTYPE html>
<html lang="en">
<head>
<meta charse UTF-8">
<meta name="viewport” content="width=device-width, initial-scale=1.0">
le App - vi</title>
stylesheet” href="./style.css">

<h1>MyApp</h1>
<p>Hello from MyApp. Your app is up!</p>
</body>
</html>
<!DOCTYPE html>
<html lang="en">
<head>
<meta charse UTF-8">
<meta name="viewport"” content="width=device-width, initial-scale=1.0">
<title>Simple App - vi</titl
<link re tylesheet™ href="./style.css">
</head>
<body>
<h1>MyApp</h1>
<p>Hello from MyApp. Your app is up!</p>
</body>
</html>
<!DOCTYPE html>
<html lang="
<head>
<meta charse
<meta name="viewport"™ content="width=device-width, initial-scale=1.0">
<title>Simple App - vi</title
<link rel="stylesheet” href="./style.css"
</head>
<body>
<h1>MyApp</h1>
<p>Hello from MyApp. Your app is up!</p>
</body>
</html>

Proceed with further commands in the new terminal.
Step 6: Observe the effect of autoscaling

1. Run the following command to observe the replicas increase in accordance with the autoscaling:
kubectl get hpa myhpa --watch

theia@theiad er-ksundararaja: $ kubectl get hpa myhpa --watch
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

myhpa Deployment/myapp 95%/5% 1 5 3m26s

1e ELELL

myhpa Deployment/myapp 45%/5% 1
myhpa Deployment/myapp 25%/5% 1 10 4m16s
1l

myhpa Deployment/myapp 19%/5% 1e 4m31s

2. You will see an increase in the number of replicas, which shows that your application has been autoscaled.

3. Terminate this command by pressing CTRL + C.
Step 7: Observe the details of the HPA

1. Run the following command to observe the details of the horizontal pod autoscaler:

5sur7 3/13/2025, 2:59 PM

Firefox

6 sur 7

kubectl get hpa myhpa

https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

heia@theiadocker-ksundararaja: $ kubectl get hpa myhpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS

myhpa Deployment/myapp 16%/5% 1 10 10

araja:

2. You will notice that the number of replicas has increased now.

3. Stop the proxy and the load generation commands running in the other two terminals by pressing CTRL + C.

Exercise 4: Create a Secret and update the deployment

Kubernetes Secrets lets you securely store and manage sensitive information, such as passwords, OAuth tokens, and SSH keys. Secrets are base64-encoded and can be used in your applications as environment variables or

mounted as files.
Step 1: Create a Secret

Explore the content of the file secret.yaml:

apiVersion: v1

kind: Secret

metadata:
name: myapp-secret

type: Opaque

data:
username: bX11lc2VybmFtZQ==
password: bX1wYXNzd29yZA==

Explanation

This YAML file defines a secret named mysecret with two key-value pairs: username and password. The values are base64-encoded strings.

Step 2: Update the deployment to utilize the secret

Add the following lines at the end of deployment.yaml:

env:
- name: MYAPP_USERNAME
valueFrom:
secretKeyRef:
name: myapp-secret
key: username
- name: MYAPP_PASSWORD
valueFrom:
secretKeyRef:
name: myapp-secret
key: password

Explanation

® name: - Defines the environment variables: 'MYAPP_USERNAME' and 'MYAPP_PASSWORD!, respectively.

® valueFrom: - Specifies that the value of the environment variable should be sourced from another location rather than being hardcoded.

secretKeyRef: - Indicates that the value of the environment variable should come from a Kubernetes secret.
name: myapp-secret - Specifies the name of the secret 'myapp-secret’, from which to retrieve the value.

key: - Specifies which key within the secret is to be used for the value of the MYAPP_USERNAME' and 'MYAPP_PASSWORD' environment variables, respectively.

With these updates, the myapp application can now read these environment variables to get the required credentials, making it more secure and flexible.

Step 3: Apply the secret and deployment

1. Apply the secret using the following command:

kubectl apply -f secret.yaml

2. Apply the updated deployment using the following command:

kubectl apply -f deployment.yaml

$ kubectl apply -f secret.yaml

$ kubectl apply -f deployment.yaml

Step 4: Verify the secret and deployment

You will now verify if the secret and the deployment using it have been applied.

1. Run the following command to retrieve the details of myapp-secret showing its name, type, and creation timestamp:

kubectl get secret

r-ksundararaja: $ kubectl get secret

kubernetes.io/dockerconfigjson
kubernetes.io/dockerconfigison
myapp-secret Opaque

2. Run the following command to show the status of the deployment, including information about replicas and available replicas.

kubectl get deployment

theia@theiadocker-ksundarar 3
NAME READY UP-TO-DATE AVAILABLE AGE
5 6mé6s

myapp 5/1@ 1

heia@theiadocker-ksund ja: s 1

Conclusion

In this lab, you began by building and deploying an application called myapp on Kubernetes.

$ kubectl get deployment

Following this, you configured a Vertical Pod Autoscaler (VPA) to automatically adjust resource requests and limits for the myapp deployment.
Subsequently, you implemented a Horizontal Pod Autoscaler (HPA) to scale the number of replicas for the myapp deployment based on CPU utilization.

Finally, you created a Secret and updated the myapp deployment to utilize it.

3/13/2025, 2:59 PM

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

Author(s)

Nikesh Kumar

© IBM Corporation. All rights reserved.

7 sur 7 3/13/2025, 2:59 PM

https://www.linkedin.com/in/raonikeshnk
https://www.linkedin.com/in/raonikeshnk

