Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

Introduction to Kubernetes

Skills
Network

Objectives

In this lab, you will:

e Use the kubectl CLI

o Create a Kubernetes Pod

o Create a Kubernetes Deployment

o Create a ReplicaSet that maintains a set number of replicas
o Witness Kubernetes load balancing in action

Note: Kindly complete the lab in a single session without any break because the lab may go on offline mode and may cause errors. If you face any issues/errors during the lab
process, please logout from the lab environment. Then clear your system cache and cookies and try to complete the lab.

Verify the environment and command line tools

1. If a terminal is not already open, open a terminal window by using the menu in the editor: Terminal > New Terminal.

Note: Please skip this step if the terminal already appears.

File Edit Selection View Go Run Terminal Help

New Terminal Ctri+Shift+

Run Task
Problems X Run Build
Run Test Task
Rerun Last Task Ctri+Shift+K

No problems have been detected in the wor

Show Running Tasks.
Restart Running Task.
Terminate Task
Attach Task

Configure Tasks

2. Verify that kubectl CLI is installed.
kubectl version
You should see the following output, although the versions may be different:

the
Client Version: version.Info{Major:"1", Minor: 6i : i i 0 7e2054d824aeabcd1”, GitTreeState:"clean”, BuildDate:
"2021-10-27T18:41 GoVersion . g)

Server Version: versi j i - K i 3 70ff995f9b6ba21452d0325db2ad", GitTreeState:"clean”, Build
Date: :

the

3. Change to your project folder.
Note: Please skip this step if you are already on the ‘/home/project’ directory
cd /home/project
4. Clone the git repository that contains the artifacts needed for this lab, if it doesn’t already exist.
[! -d 'cc2e1'] && git clone https://github.com/ibm-developer-skills-network/CC201.git

theia@theiadocker ! : "1 it gith ; kills-network/CC201.git
Cloning into 'CC201'...

remote: Enumerating objec

remote: Counting objects:

remote: Compressing objects

remote: Total 20 (delta 6),

Unpacking objec 100% (2), done.

theia@theiad

5. Change to the directory for this lab by running the following command. cd will change the working/current directory to the directory with the name specified, in this case CC201/
labs/2_IntroKubernetes.

cd CC201/1abs/2_IntroKubernetes/

$ cd CC201/labs/2_IntroKubernetes/
sl

1sur8 3/11/2025, 1:58 PM

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

Use the kubectl CLI

Recall that Kubernetes namespaces enable you to virtualize a cluster. You already have access to one namespace in a Kubernetes cluster, and kubectl is already set to target that cluster and namespace.
Let’s look at some basic kubectl commands.
1. kubectl requires configuration so that it targets the appropriate cluster. Get cluster information with the following command:

kubectl config get-clusters

theia@thei $ kubectl config get-clusters
NAME

labs-prod-kubernetes-sandbox/c8ana@sweljj8gkugn50

theia@theiadocker s

2. A kubectl context is a group of access parameters, including a cluster, a user, and a namespace. View your current context with the following command:
kubectl config get-contexts

theia@theiadocke $ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE

* context labs-prod-kubernetes-sandbox/c8ana@sweljjsgkugnse [N sn-labs-
theiadocker $i

3. List all the Pods in your namespace. If this is a new session for you, you will not see any Pods.
kubectl get pods

theia@theiadocker $ kubectl get pods

No resources found in sn-labs | namespace.

theia@theiadocker 3 |

Create a Pod with an imperative command

Now it’s time to create your first Pod. This Pod will run the hello-world image you built and pushed to IBM Cloud Container Registry in the last lab. As explained in the videos for this module, you can create a
Pod imperatively or declaratively. Let’s do it imperatively first.

1. Export your namespace as an environment variable so that it can be used in subsequent commands.

export MY_NAMESPACE=sn-1labs-$USERNAME

$ export MY_NAMESPACE=sn-labs-$USERNAME

sl

2. Click the Explorer icon (it looks like a sheet of paper) on the left side of the window, and then navigate to the directory for this lab: cc2e1 > labs > 2_IntroKubernetes. Click on Dockerfile. This is the
file that will be used to build our image.

File Edit Selection View Go Run Terminal Help

@ EXPLORER o Dockerfile x

> OPEN EDITORS (1 0 2
node:9.4.0-alpine
app.js .
package.json .
v labs npm install &&\

> 1_ContainersAndDocker apk update &&\

v PROJECT
v CC201

2_IntroKubemetes apk upgrade
aoo.is 8080
Dockerfile node app.js

hello-worid-apply.yaml|

hello-world-create.yaml
package.json
> 3_K8sScaleAndUpdate
gitignore
LICENSE
README.md

3. Build and push the image again, as it may have been deleted automatically since you completed the first lab.

docker build -t us.icr.io/$MY_NAMESPACE/hello-world:1 . && docker push us.icr.io/$MY_NAMESPACE/hello-world:1

2 sur 8 3/11/2025, 1:58 PM

Firefox

3sur 8

https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

$ docker build

Sending build context to Docker daemon .656kB

Step 1/6 : FROM node:9.4.@-alpine

9.4.0-alpine: Pulling from library/node

605celbd3f31: Pull complete

fe58b30348fe: Pull complete

46ef8987ccbd: Pull complete

Digest: sha256:9cd67a00ed111285460a83847720132204185e9321ec35dacec@d8b9bf674adf

Status: Downloaded newer image for node:9.4.@-alpine
---> b5f94997f35f

Step 2/6 : COPY app.js
== 350€465969

Step 3/6 : COPY package.json
---> 45bfédb4afsf

Step 4/6 : RUN npm install &&
-- Running in a37db9cedlbc

apk update &% apk upgrade

added 50 packages in 2.085s
fetch http://dl-cdn.alpinelinux.org/alpine/v3.6/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.6/community/x86_64/APKINDEX.tar.gz
v3.6.5-44-gda55e27396 [http://dl-cdn.alpinelinux.org/alpine/v3.6/main]
v3.6.5-34-gf@ba@b4a3d5 [http://dl-cdn.alpinelinux.org/alpine/v3.6/community]
OK: 8448 distinct packages available
Upgrading critical system libraries and apk-tools:
(1/1) upgrading apk-tools (2.7.5-r@ -> 2.7.6-r@)
Executing busybox-1.26.2-r9.trigger
Continuing the upgrade transaction with new apk-tools:
(1/7) Upgrading musl (1.1.16-r14 -> 1.1.16-r15)
(2/7) upgrading busybox (1.26.2-r9 -> 1.26.2-r11)
Executing busybox-1.26.2-r11.post-upgrade
(3/7) Upgrading libressl2.5-libcrypto (2.5.5-r@
(4/7) Upgrading libressl2.5-1libssl (2.5.5-r
L PPIRET 2 c_13 2 =

4. Run the hello-world image as a container in Kubernetes.

kubectl run hello-world --image us.icr.io/$MY_NAMESPACE/hello-world:1 --overrides='{"spec":{"template":{"spec":{"imagePullSecrets":[{"name":"icr"}1}}}}

-t us

.icr.io/$MY_NAMESPACE/hello-world:1

&& docker push us.icr.io/$MY_NAMES

The --overrides option here enables us to specify the needed credentials to pull this image from IBM Cloud Container Registry. Note that this is an imperative command, as we told Kubernetes explicitly what

to do: run hello-world.

$ kubectl run hello-world

"imagePullSecrets”: [{"
vorld created

theia@theiadocker Y |
5. List the Pods in your namespace.
kubectl get pods
t @ . $ kubectl get
NAME READY STATUS RESTARTS AGE

hello-world 1/1 Running @
a@th cker 3 |

pods

Great, the previous command indeed created a Pod for us. You can see an auto-generated name was given to this Pod.

You can also specify the wide option for the output to get more details about the resource.

kubectl get pods -o wide

theia@itheiad . $ kubectl get
NAME REA! STATUS RESTARTS AGE IpP NODE

hello-world 1/1 Running @ 59s 172.17.183.177 10.241.64.24 <none>
the he er $

6. Describe the Pod to get more details about it.

kubectl describe pod hello-world

pods

-o wide

NOMINATED NODE READINESS GATES

<none>

--image us.icr.io/$MY_NAMESPACE/hello-world:1 --override

3/11/2025, 1:58 PM

Firefox

4 sur 8

theiafitheia
LELLH
Namespace:
Priority:
Priority Cla
Node:

Start Time:
Label
Annotations:

a3
I

IpP 172.17.183.177

Containers:
hello-world:
Container ID:
Image:
Image ID:
Port:
Host Port:
State:
Started:
Ready:
Restart Count:
Limits:
cpu:

https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

$ kubectl describe pod hello-world

hello-world
sn-1abs -G
1

normal
10.241.64.24/10.241.64.24
8 Apr 2022 ©5:15:40 +0000

cni.projectcalico.org/containerlI c89fd419d56a582514d497f@b01b939cf745343036e9a45f135235e7d5bc528e
cni.projectcalico.org/podIP: 172.17.183.177/32
cni.projectcalico.org/podIPs: 172.17.183.177/32
kubernetes.io/limit-ranger:
LimitRanger plugin set: cpu, ephemeral-storage, memory reque for container hello-world; cpu, ephemeral-storage, memory limit for contain..
kubernetes.io/psp: ibm-privileged-psp
Running
172.17.183.177

containerd://31c934f489c232a36729b3e3f013a5619f11fc8f95ee8a1007f9f540dc4d420a

icr.io/sn-labs -/ hello-worl

us.icr.io/sn-1la _/hello»world(_ ha256:a04a56181ae9136e4b7033d5284ce9d68fe812c21b28592ffb292d8b496b6b81

<none>

<none>

Running

Fri, @8 Apr 2022 05:15:46 +0000
True

2]

500m

ephemeral-storage: 5Gi

memory
Reque
cpu:

512Mi

200m

ephemeral-storage: 512Mi

memory :
Environment:
Mounts:

128Mi

/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-bjdzp (ro)

Conditions:
Type

Status

Note: The output shows the pod parameters like Namespace, Pod Name, IP address, the time when the pod started running and also the container parameters like container ID,
image name & ID, running status and the memory/CPU limits.

7. Delete the Pod.

kubectl delete pod hello-world

-
deleted

$ kubectl delete pod hello-world

s 1

This command takes a while to execute the deletion of the pod. Please wait till the terminal prompt appears again.

8. List the Pods to verify that none exist.

kubectl get pods

$ kubectl get pods

s il

Create a Pod with imperative object configuration

Imperative object configuration lets you create objects by specifying the action to take (e.g., create, update, delete) while using a configuration file. A configuration file, hello-world-create.yaml, is provided to

you in this directory.

1. Use the Explorer to view and edit the configuration file. Click the Explorer icon (it looks like a sheet of paper) on the left side of the window, and then navigate to the directory for this lab: cc2e1 > labs >
2_IntroKubernetes. Click hello-world-create.yaml to view the configuration file.

File Edit Selection

@ EXPLORER

> OPEN EDITORS
v PROJECT

v CC201

v labs

View Go Run Terminal Help

> 1_ContainersAndDocker

v 2_IntroKubernetes

app.js
Dockerfile

hello-world-apply.yaml
hello-worid-create.yaml
package_json
> 3_K8sScaleAndUpdate
gitignore
LICENSE
README.md

2. Use the Explorer to edit hello-world-create.yaml. You need to insert your namespace where it says <my_namespace>. Make sure to save the file when you’re done.

3/11/2025, 1:58 PM

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

hello-world-create.yaml x

3. Imperatively create a Pod using the provided configuration file.
kubectl create -f hello-world-create.yaml
Note that this is indeed imperative, as you explicitly told Kubernetes to create the resources defined in the file.

E hei cker-
pod/hello-world created

theia@theiadocker s

$ kubectl create -f hello-world-create.yaml

4. List the Pods in your namespace.
kubectl get pods
theia@theiadocker

NAME READY STATUS RESTARTS AGE
hello-world 1/1 Running (] 17s

theia@theiadocker s 1

5. Delete the Pod.

$ kubectl get pods

kubectl delete pod hello-world

Btheiadocker

$ kubectl delete pod hello-world
hello-world™ deleted

eia@theiadocker 3 |

This command takes a while to execute the deletion of the pod. Please wait till the terminal prompt appears again.
6. List the Pods to verify that none exist.

kubectl get pods

$ kubectl get pods

ources found in sn-labs-_namespace.

ocker s i

Create a Pod with a declarative command

The previous two ways to create a Pod were imperative — we explicitly told kubectl what to do. While the imperative commands are easy to understand and run, they are not ideal for a production environment.
Let’s look at declarative commands.

1. A sample hello-world-apply.yaml file is provided in this directory. Use the Explorer again to open this file. Notice the following:

e We are creating a Deployment (kind: Deployment).
o There will be three replica Pods for this Deployment (replicas: 3).
o The Pods should run the hello-world image (- image: us.icr.io/<my_namespace>/hello-world:1).

5sur8 3/11/2025, 1:58 PM

Firefox

6 sur 8

File Edit Selection View Go Run Termi

EXPLORER
> OPEN EDITORS
v PROJECT

v CC201

v labs
> 1_ContainersAndDocker
v 2_IntroKubemetes

appjs
Dockerfile
hello-worid-apply.yaml|
hello-world-create_yaml
package.json

3_K8sScaleAndUpdate

gitignore

LICENSE

README.md

2. Use the Explorer to edit hello-world-apply.yaml. You need to insert your namespace where it says <my_namespace>. Make sure to save the file when you’re done.

File Edit Selection View Go Run Terminal

hello-world-apply.yaml x

nal Help

You can ignore the rest for now. We will get to a lot of those concepts in the next lab.

Help

pply.yaml

https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

3. Use the kubectl apply command to set this configuration as the desired state in Kubernetes.

kubectl apply -f hello-world-apply.yaml

orld created

4. Get the Deployments to ensure that a Deployment was created.

kubectl get deployments

theia@theiadocker
NAME READY UP-TO-DATE AVAI
hello-world 3/3 3 3

LABLE

5. List the Pods to ensure that three replicas exist.

kubectl get pods

the thei
NAME
hello-world-774ddf45b5-86gn6

hello-world-774ddf45b5-9cbv2
hello-world-774ddf45b5-svpf7
thei th r

STATUS

Running
Running
Running

$ kubectl apply -f hell

$ kubectl get deployments

$ kubectl get pods

3/11/2025, 1:58 PM

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

With declarative management, we did not tell Kubernetes which actions to perform. Instead, kubectl inferred that this Deployment needed to be created. If you delete a Pod now, a new one will be created in its
place to maintain three replicas.

6. Note one of the Pod names from the previous step, replace the pod_name in the following command with the pod name that you noted and delete that Pod and list the pods. To see one pod being terminated,
there by having just 2 pods, we will follow the delete, immediately with get.

kubectl delete pod <pod_name> &% kubectl get pods

theiafitheis E ksundararaja: $ kubectl delete pod hello-world-5b5467f896-9brft && kubectl get pods
pod "hello-world-5b5467f896-9brft™ deleted

NAME READY STATUS RESTARTS AGE

hello-world-5b5467f896-6jpnd 1/1 Running @ 3m7s
hello-world-5b5467f896-wz45f 1/1 Running @ 3més
theiafitheiadocker-ksundararaja:

This command takes a while to execute the deletion of the pod. Please wait till the terminal prompt appears again.
7. List the Pods to see a new one being created.
You may have to run this command a few times as it may take a while to create the new pod.

kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-world-774ddf45b5-28k7j 1/1 Running @ 36s
hello-world-774ddf45b5-9cbv2 1/1 Running @ 112s
hello-world-774ddf45b5-svpf7 1/1 Running @ 112s

The output should reflect three pods running.

Load balancing the application

Since there are three replicas of this application deployed in the cluster, Kubernetes will load balance requests across these three instances. Let’s expose our application to the internet and see how Kubernetes
load balances requests.

1. In order to access the application, we have to expose it to the internet using a Kubernetes Service.

kubectl expose deployment/hello-world

$ kubectl expose deployment/hello-world

This command creates what is called a ClusterIP Service. This creates an IP address that accessible within the cluster.
2. List Services in order to see that this service was created.
kubectl get services
$ kubectl get services
CLUSTER-IP EXTERNAL-IP PORT(S) AGE

ClusterIP 172.21.186.58 <none> 8080/TCP 44s

e |

3. Open a new terminal window using Terminal > Split Terminal.

IBMCloud Launch Application
File Edit Selection View Go Run Terminal Help

New Terminal Cirl+Shift+
Split Terminal

Run Task

Run Build Task

Run Test Task

Rerun Last Task Ctri+Shift+K

Show Running Tasks.
Restart Running Task

theia@theiadocker-| Terminate Task
tock Attach Task.

k cker
service/hello-world exposed
tl b "

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
hello-world ClusterIP 172.21.186.58 <none> 8080/TCP

theia@theiadocker

Configure Tasks.

4. Since the cluster IP is not accessible outside of the cluster, we need to create a proxy. Note that this is not how you would make an application externally accessible in a production scenario. Run this
command in the new terminal window since your environment variables need to be accessible in the original window for subsequent commands.

kubectl proxy

theia@theiadocker | ome/project/CC201/1abs/2_IntroKubemetes x @ theia@theiadocker M rome/project X

eiafitheiadocker $ kubectl proxy

service/hello-world exposed
e arting to serve on 127.0.0.

th
th @theiad $ kubectl S
get services [|

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-world ClusterIP 172.21.186.58 <none> 8080/TCP 44s
theia@theiadocker s [

This command doesn’t terminate until you terminate it. Keep it running so that you can continue to access your app.

5. In the original terminal window, ping the application to get a response.

7 sur 8 3/11/2025, 1:58 PM

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUZI I Nilsl...

curl -L localhost:80@1/api/vl/namespaces/sn-labs-$USERNAME/services/hello-world/proxy

theiatheiadocker $ curl -L localhost:8001/api/vl/namespaces/sn-lab
s-$USERNAME/services/hello-world/proxy
Hello world from hello-world-774ddf45b5-28k7j! Your app is up and running!

theia@theiadocker $

Notice that this output includes the Pod name.

6. Run the command which runs a for loop ten times creating 10 different pods and note names for each new pod.
for i in “seq 10" ; do curl -L localhost:8001/api/vl/namespaces/sn-labs-$USERNAME/services/hello-world/proxy; done

theiafitheiadocker- $ for i in “seq 10 do curl -L localhost:8001/ap
i/vl/namespaces/sn-labs-$USERNAME/services/hello-world/proxy;

Hello world from hello-world-774ddf45b5-svpf7! Your app is up running!
Hello world from hello-world-774ddf45b5-9cbv2! Your app is up running!
Hello world from hello-world-774ddf45b5-28k7j! Your app is up running!
Hello world from hello-world-774ddf45b5-28k7j! Your app is up running!
Hello world from hello-world-774ddf45b5-28k7j! Your app is up running!
Hello world from hello-world-774ddf45b5-28k7j! Your app is up running!
Hello world from hello-world-774ddf45b5-28k7j! Your app is up running!
Hello world from hello-world-774ddf45b5-28k7j! Your app is up running!
Hello world from hello-world-774ddf45b5-svpf7! Your app is up running!
Hello world from hello-world-774ddf45b5-svpf7! Your app is up running! 1
theia@theiadocl $

You should see more than one Pod name, and quite possibly all three Pod names, in the output. This is because Kubernetes load balances the requests across the three replicas, so each request could hit a
different instance of our application.

7. Delete the Deployment and Service. This can be done in a single command by using slashes.
kubectl delete deployment/hello-world service/hello-world
$ kubectl delete deployment/hello-world service/h

deployment.apps “hello-world" deleted
ice "hello-world" deleted

ker 3 |

Note: If you face any issues in typing further commands in the terminal, press Enter.

8. Return to the terminal window running the proxy command and kill it using ctrl+c.

theia@theiadocker- | home/project x

t aithei 3 $ kubectl proxy
Starting to serv

=G

theia@theiadocke Y |

Congratulations! You have completed the lab for the second module of this course.

© IBM Corporation. All rights reserved.

8 sur § 3/11/2025, 1:58 PM

