
Practice Lab: Introduction to Kubernetes Objects

Estimated time needed: 45 minutes

This practice lab is designed to provide hands-on experience with Kubernetes, focusing on creating services, using various kubectl commands, and deploying StatefulSets and
DaemonSets.

Objectives

After completing this lab, you will be able to:

• Create a Kubernetes Service
• Use various kubectl commands
• Deploy a StatefulSet for managing stateful applications
• Implement a DaemonSet for running a single pod on all nodes

Note: Kindly complete the lab in a single session without any break because the lab may go on offline mode and may cause errors. If you face any
issues or errors during the lab process, please log out of the lab environment. Then clear your system cache and cookies and try to complete the lab.

Setup Environment
Open a terminal window using the menu: Terminal > New Terminal.

Note: If the terminal is already opened, please skip this step.

Step 1: Verify kubectl Version

Before proceeding, ensure that you have kubectl installed and properly configured. To check the version of kubectl, run the following command:

kubectl version

You should see the following output, although the versions may be different:

Task 1: Create a Kubernetes Service using nginx image
A popular open-source web server, nginx is known for its high performance, stability, and low resource usage. It can also function as a reverse proxy, load balancer, and HTTP cache.

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUzI1NiIsI...

1 sur 5 3/11/2025, 1:34 PM

Creating a Kubernetes Service using an nginx image involves setting up a networking layer that allows other components within the Kubernetes cluster or external users to access the
nginx application running in pods. To run nginx as a service in Kubernetes, you can follow these steps:

1. Create a Deployment named my-deployment1 using the nginx image

 kubectl create deployment my-deployment1 --image=nginx

kubectl: The command-line tool for interacting with the Kubernetes API.

create deployment: Tells Kubernetes that you want to create a new Deployment. A Deployment is a Kubernetes object that manages a set of replicated Pods, ensuring that the specified
number of replicas are running and updated.

my-deployment1: It is the name of the Deployment being created. In this case, the Deployment is named my-deployment1.

--image=nginx: It specifies the container image used for the Pods managed by this Deployment. The nginx image is a popular web server and reverse proxy server.

It creates a Deployment named my-deployment1 that uses the nginx image. Deployments manage the rollout and scaling of applications.

2. Expose the deployment as a service

 kubectl expose deployment my-deployment1 --port=80 --type=NodePort --name=my-service1

It exposes the my-deployment1 Deployment as a Service named my-service1, making it accessible on port 80 through a NodePort. NodePort services allow external traffic to access the
service.

3. Lists all services in the default namespace. Services provide a stable IP address and DNS name for accessing a set of pods.

 kubectl get services

This command lists all the services in the default namespace, including nginx-service, and provides details such as the ClusterIP, NodePort, and target port.

By following these steps, you create a Kubernetes Service named nginx, which routes traffic to the nginx pods running in your cluster, making them accessible internally and externally
via the assigned NodePort.

Task 2: Manage Kubernetes Pods and Services
1. Get the list of pods

 kubectl get pods

This command displays all pods, including those created by the my-deployment1 Deployment.

2. Show labels

Replace <pod-name> with the actual pod Name:

 kubectl get pod <pod-name> --show-labels

This command will list the labels associated with the specified pod, helping you identify its attributes and categorization within your Kubernetes cluster.

3. Label the pod

Replace <pod-name> with the actual pod Name:

 kubectl label pods <pod-name> environment=deployment

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUzI1NiIsI...

2 sur 5 3/11/2025, 1:34 PM

The command is used in Kubernetes to label a specific pod with the key-value pair environment=deployment. This label helps categorize and manage pods based on their deployment
environment, making it easier to organize and select Kubernetes objects within the cluster.

4. Show labels

Replace <pod-name> with the actual pod Name:

 kubectl get pod <pod-name> --show-labels

5. Run a test pod using the nginx image

 kubectl run my-test-pod --image=nginx --restart=Never

This command tells Kubernetes to create a pod named "my-test-pod" using the nginx image, and the pod will not restart automatically if it stops for any reason as we are using --
restart=Never.

6. Show logs

kubectl logs <pod-name>

Replace <pod-name> with the actual name of the pod.

This command retrieves and displays the logs generated by the specified pod, allowing you to troubleshoot issues, monitor activity, and gather information about the pod's behavior.

Task 3: Deploying a StatefulSet
A StatefulSet manages the deployment and scaling of a set of pods, and maintains a sticky identity for each of their Pods, ensuring that each Pod has a persistent identity and storage.

1. Create and open a file named statefulset.yaml in edit mode.

 touch statefulset.yaml

2. Open statefulset.yaml, and add the following code, and save the file:

 apiVersion: apps/v1
 kind: StatefulSet
 metadata:
 name: my-statefulset
 spec:
 serviceName: "nginx"
 replicas: 3
 selector:

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUzI1NiIsI...

3 sur 5 3/11/2025, 1:34 PM

 matchLabels:
 app: nginx

template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:

- name: nginx
 image: nginx
 ports:

- containerPort: 80
 name: web
 volumeClaimTemplates:

- metadata:
 name: www
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

3. Apply the StatefulSet configuration.

 kubectl apply -f statefulset.yaml

This command tells Kubernetes to create the resources defined in the YAML file.

4. Verify that the StatefulSet is created.

 kubectl get statefulsets

After applying the StatefulSet, you should verify that the StatefulSet has been created and is running. This can be done using the kubectl get command.

By following these steps, you can successfully apply a StatefulSet in Kubernetes. The kubectl apply command is used to create the StatefulSet, and the kubectl get command helps you
verify that the StatefulSet is running as expected.

Task 4: Implementing a DaemonSet
A DaemonSet ensures that a copy of a specific Pod runs on all (or some) nodes in the cluster. It is particularly useful for deploying system-level applications that provide essential
services across the nodes in a cluster, such as log collection, monitoring, or networking services.

1. Create a file named daemonset.yaml and open it in edit mode:

 touch daemonset.yaml

2. Create and open a file named daemonset.yaml in edit mode.

 apiVersion: apps/v1
 kind: DaemonSet
 metadata:
 name: my-daemonset
 spec:
 selector:
 matchLabels:
 name: my-daemonset

template:
 metadata:
 labels:
 name: my-daemonset
 spec:
 containers:

- name: my-daemonset
 image: nginx

3. Apply the DaemonSet

 kubectl apply -f daemonset.yaml

This command tells Kubernetes to apply the configuration defined in the daemonset.yaml file. The apply command is used to create or update Kubernetes resources based on the
configuration provided in the YAML file.

4. Verify that the DaemonSet has been created

 kubectl get daemonsets

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUzI1NiIsI...

4 sur 5 3/11/2025, 1:34 PM

This output from kubectl get daemonsets provides information about the DaemonSet named "my-daemonset" in your Kubernetes cluster.

• NAME: The name of the DaemonSet, which is "my-daemonset" in this case.

• DESIRED: The desired number of DaemonSet pods. In your case, it's set to 7.

• CURRENT: The current number of DaemonSet pods running. It shows 6 pods are currently running.

• READY: The number of DaemonSet pods that are ready and available for use. All 6 running pods are ready.

• UP-TO-DATE: The number of DaemonSet pods that are up-to-date with the latest configuration.

• AVAILABLE: The number of DaemonSet pods that are available for use.

• NODE SELECTOR: Specifies which nodes in the cluster the DaemonSet should run on. In this case, it's set to <none>, meaning the DaemonSet is not restricted to specific
nodes.

• AGE: The age of the DaemonSet, indicating how long it has been running.

Conclusion
Congratulations! You have completed the practice lab on Kubernetes. You created a Kubernetes Service, used various kubectl commands, deployed StatefulSets for stateful
applications, and implemented DaemonSets for uniform pod deployment across cluster nodes.

Author(s)

Manvi Gupta

© IBM Corporation. All rights reserved.

Firefox https://author-ide.skills.network/render?token=eyJhbGciOiJIUzI1NiIsI...

5 sur 5 3/11/2025, 1:34 PM

https://www.linkedin.com/in/manvi-gupta-764438262/
https://www.linkedin.com/in/manvi-gupta-764438262/

